Для ее эффективного решения необходимо запускать поисковые телескопы в космос, и не просто в космос, а подальше от Земли. Например, в либрационные точки (точки Лагранжа) L1, L4, L5 (рисунок 2). В этом случае мы будем смотреть на Землю как бы сбоку, что позволит обнаруживать опасные объекты, приближающиеся к нашей планете со стороны Солнца. По теоретическим расчетам, еще большую эффективность обнаружения даст размещение космических аппаратов на орбите Венеры или Меркурия.
Техническая реализация таких проектов осложнятся необходимостью передачи больших объемов данных на огромные расстояния. Для точки L1 это 1,5 миллиона километров, для L4/L5 — 150 миллионов километров, ну а для орбиты Венеры оно колеблется от 38 до 261 миллиона километров. Здесь потребуется найти баланс между двумя подходами. Что лучше, передавать «сырые» кадры на Землю и уже тут, на мощных компьютерах, выжимать из них максимум информации — в нашем случае детектировать даже самые тусклые объекты — или передавать только измерения, а всю упрощенную обработку вести на борту? Скорее всего, будет применен симбиоз обоих подходов. И это только одна из многих сложных технических задач, которые придется решить ученым и инженерам.
Теоретические проработки таких миссий ведутся, в том числе и в России. Только после того как мы сможем массово обнаруживать внутренние АСЗ и изучать их популяцию, мы сможем закрыть один из вопросов АКО в части обнаружения опасных объектов. Но это еще не все. Хорошо, спросите вы, мы обнаружили объект, летящий на столкновительной траектории к Земле, а что дальше?
Еще труднее «сбить»
Если говорить реально, то пока мы можем лишь рассчитать время и место падения. То есть, оповестить специальные службы и постараться эвакуировать население из опасного района. Для этого нужно увеличивать характерное время упреждения с нескольких часов до нескольких суток. Если говорить о парировании угрозы, то тут все не так просто. Если это экстренный случай и опасность грозит нам в самом ближайшем будущем, то выбор невелик — это либо чисто кинетическое воздействие (удар болванкой), либо взрывное, вкупе с кинетическим (заглубляем заряд и подрываем его).
Вроде бы все красиво и даже достаточно реализуемо. Малые тела мы уже успешно бомбардировали, заряд есть, дежурные носители-перехватчики можно создать, но есть не несколько «но».
Во-первых, этот подход касается только сравнительно небольших объектов. Хорошая новость заключается в том, что подавляющее большинство больших АСЗ мы уже знаем и реальной угрозы, на горизонте пары сотен лет, они собой не представляют. Но остаются еще неизвестные кометы, которые, как мы видим, могут приближаться к Земле.
Во-вторых, чтобы попасть в объект, надо хорошо знать его орбиту, а для этого требуется длительное время наблюдения (наблюдательная дуга). Если же объект обнаружен за несколько суток до столкновения, даже если у нас перехватчик стоит под парами, то можем и не попасть.
И в-третьих, описанные выше методы не контролируемые — то есть, разрушив один большой объект, мы можем получить облако осколков, которые войдут в атмосферу, и далеко не все из них сгорят. И тут еще вопрос, что лучше: один большой объект или рой его осколков. Или мы можем кинетическим воздействием сдвинуть астероид не так, как нам хотелось бы, переместив его, к примеру, на орбиту с еще большей вероятностью столкновения. Поскольку мы не пишем сценарий нового блокбастера, то все может пойти далеко не так, как задумано…
Если объект опасен для нас в среднесрочной перспективе, на интервале десятков лет, то тут можно использовать методы мягкого и, что немаловажно, контролируемого воздействия. Для неподготовленного человека они могут показаться достаточно странными, но они действительно могут сработать, если у нас в запасе есть десятки лет. Например, мы можем разместить вблизи астероида небольшой космический аппарат, который будет притягивать астероид — так же как и астероид будет притягивать к себе аппарат, но, конечно, с большей силой, ведь огромная глыба намного массивнее. В этом случае мы можем очень точно рассчитать воздействие и предсказуемо, очень медленно, изменить орбиту небесного тела.
Можно посадить космический аппарат на поверхность астероида и менять его орбиту двигателями малой тяги. Посадка на астероид или ядро кометы давно не фантастика — это уже было реализовано. Можно даже покрасить астероид! Да-да, покрасить одну сторону астероида в белый цвет, чтобы она отражала солнечный свет, а вторая, неокрашенная сторона при этом нагревалась, излучая тепловую энергию, способную придать астероиду дополнительное ускорение (эффект Ярковского). Зная форму астероида и параметры его вращения вокруг своей оси, можно рассчитать, как именно необходимо его окрасить для достижения требуемого результата.
Таков краткий обзор проблематики АКО, хотя, конечно, эта тема намного обширнее и глубже. Есть те, кто говорит, что эта проблема не заслуживает внимания, ведь вероятность крупного столкновения очень мала. Да, это так, и задача настоящих ученых — не пугать, а предупреждать. Пусть вероятность и правда очень мала, но и цена бездействия — миллионы и миллиарды жизней, а может, и судьба всей цивилизации. У человечества есть все для того, чтобы не пойти по печальному пути динозавров (хотя для нас падение небесного тела в Мексиканском заливе оказалось счастливым событием — первые млекопитающие вытянули тогда свой счастливый билет).
Поэтому нам необходимо сделать все, чтобы сохранить наш мир, и это относится, конечно, не только к астероидно-кометной опасности. Всем добра и почаще смотрите на ночное небо — оно очень красиво и таит еще много загадок, которые нам предстоит разгадать!
Леонид Еленин